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The magnetohydrodynamic (MHD) flow through sharp 90" bends of rectangular 
cross-section, in which the flow turns from a direction almost perpendicular to the 
magnetic field to a direction almost aligned with the magnetic field, is investigated 
experimentally for high values of the Hartmann number M and of the interaction 
parameter N .  The bend flow is characterized by strong three-dimensional effects 
causing a large pressure drop and large deformations in the velocity profile. Since such 
bends are basic elements of fusion reactors, the scaling laws of magnetohydrodynamic 
bends flows with the main flow parameters such as M and N as well as the sensitivity 
to small magnetic field inclinations are of major importance. The obtained experimental 
results are compared to those of an asymptotic theory. 

In the case where one branch of the bend is perfectly aligned with the magnetic field 
good agreement between the results obtained by the asymptotic model and by the 
experiments was found at high M 8 x lo3 and N z lo5 for pressure as well as for 
electric potentials on the duct surface. At lower values of N a significant influence of 
inertia has been detected. The pressure drop due to inertial effects was found to scale 
with N-'I3. The same - 113-power dependency on N has been found in the vicinity of 
the bend for the electric potentials at walls aligned with the magnetic field. At walls 
with a significant normal component of the field an influence neither of the Hartmann 
number nor of the interaction parameter has been found. This suggests that the inertial 
part of the pressure drop arises from inertial side layers, whereas the core flow remains 
inertialess and inviscid. A variation of the Hartmann number is of negligible influence 
compared to inertia effects with respect to pressure drop and surface potential 
distribution. The viscous part of the pressure drop scales with M-1/2.  

Changes of the magnetic field orientation with respect to the bend lead in general to 
different flow patterns in the duct, because the electric current paths are changed. The 
inertia-electromagnetic interaction determines the magnitude of the inertial part of the 
pressure drop, which scales with W1l3 for any magnetic field orientation. The 
dependence of the pressure drop on M remains proportional to M-lI2. With increasing 
M and N the measured data tend to those predicted by the asymptotic model. Local 
measurements within the liquid metal exhibit discrepancies with the model predictions 
for which no adequate explanation has been found. But they show that below a critical 
interaction parameter flow regions exist in which the flow is time dependent. These 
regions are highly localized, whereas the flow in the rest of the bend remains steady. 
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1. Introduction 
Magnetohydrodynamic (MHD) flows in bends of rectangular cross-section in the 

plane of a strong uniform magnetic field have received considerable attention during 
the last few years. Such MHD flows have been studied theoretically by Moon &Walker 
(1990), Moon, Hua & Walker (1991), Hua & Walker (1991), Buhler (1993, 1995) 
and Molokov & Buhler (1994, 1995), and experimentally by Barleon et al. (1992, 
1993~1, b) and Reimann et al. (1994). 

Apart from its practical importance in fusion blanket applications (Malang et al. 
1988), the MHD bend flow is an interesting subject on its own right. It involves all the 
characteristic features of three-dimensional MHD flows in a strong magnetic field in 
their most clearly manifested form. These features are the formation of inertialess 
inviscid cores, and boundary and internal layers, some of which are able to carry a 
significant part of the volume flux in high-velocity jets. 

Liquid-metal magnetohydrodynamic flows are controlled by the following four 
dimensionless parameters : the magnetic Reynolds number R,, the interaction 
parameter N ,  the Hartmann number M and the wall conductance radio c: 

Vw tw craBE ; M=aB,(($)  112 ; c=-. 
R, = pcmoa; N = __ 

PVO va 

Here p, (T, p and v are the magnetic permeability, electrical conductivity, density and 
kinematic viscosity of the liquid metal; a is a characteristic length scale of a duct cross- 
section; ( T ~  and t ,  are the electrical conductivity and the thickness of the duct walls; 
B, is the induction of the applied uniform magnetic field and vo is the average fluid 
velocity in the duct. The magnetic Reynolds number R, is proportional to the ratio 
of the magnetic field induced by the electric currents to the applied field, which is 
assumed to be strong. For the type of application considered R, is usually of the order 
of lop2, see Holroyd & Mitchell (1984), so that the induced magnetic field is negligible, 
while the applied field can be considered as constant. The interaction parameter N and 
the square of the Hartmann number M represent the relative importance of the 
electromagnetic body forces and the inertial and the viscous ones, respectively. The 
typical values of M and N in lithium or lithium-lead cooled fusion reactors are 103-104 
for M and 102-105 for N .  The wall conductance ratio c, which expresses the ratio of 
wall conductance to that of the fluid, is of the order of 10-2-10-1. 

Consider the flow in a right-angle bend as shown in figure 1. This bend consists of 
a duct parallel to the magnetic field, which will be called the toroidal duct, and a duct 
perpendicular to the field, which will be called the radial duct (according to the blanket 
concept presented by Malang et al. 1988). The inclination 0 of the magnetic field to 
the toroidal-duct walls does not exceed 15", which is the maximum field inclination 
with respect to the toroidal ducts in a fusion blanket. 

Before outlining some results for MHD bend flows which have been obtained in the 
past by several authors, some phenomenological aspects should be discussed. Consider 
first the flow for 0 = 0". If both radial and toroidal ducts are long enough, fully 
developed velocity profiles are established at a certain distance from the junction. In 
the toroidal duct this distance is O ( M )  for N 9 Mj", see Molokov & Buhler (1994), 
while the velocity profile is of Poiseuille type. In the radial duct the distance is O(1), 
while the profile is M-shaped (Hunt 1965; Walker 1981). In the core of the radial duct 
the velocity is constant, while part of the volume flux is carried by high-velocity jets in 
so-called parallel layers. They are formed near the walls, parallel to the magnetic field. 
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FIGURE 1 .  Schematics and coordinate system of one half of the bend flow ( z  < 0) studied. Also shown 
are the isolines of the induced wall potentials for the experimental geometry for an inclination angle 
of 0 = 0". c = 0.052 calculated with the asymptotic model presented in 53. The distance between the 
isolines is A@ = 0.05. 

The thickness of the parallel layers is determined by viscous-electromagnetic 
interaction and is O(M-liZ). The velocity in these layers is O(M1"). 

Consider now the events at the junction x = 0. Owing to Ohm's law for a moving 
conducting fluid an electric potential is induced in the radial duct where the flow is 
essentially perpendicular to the magnetic field, whereas n o  potential is induced very far 
from the junction in the toroidal duct where the flow and the magnetic field are 
parallel. The potential difference occurring in the flow direction drives the so-called 
three-dimensional electric current j , , ,  which may short-circuit in the way qualitatively 
shown in figure 1. The x-component of this current results in a Lorentz-forcej,,, x B, 
which leads to a thrust of the fluid towards the sidewalls thus enhancing the M-shape 
of the velocity profile. At the junction x = 0 a parallel, internal layer is formed, which 
separates cores of radial and toroidal ducts. 

For 0 = 0" an asymptotic inertialess theory has been developed by Molokov & 
Biihler (1994) for a U-bend and for a right-angle bend under the assumptions 
N % M"" % 1 and c % M-'I2. The latter assumption means that the currents conducted 
by the parallel layers are negligible with respect to wall currents. The theory predicts 
that the U(1) y-component of the core velocity in the toroidal duct vanishes, so that all 
the fluid is carried in the y-direction in the parallel layers. The parallel layers in the 
toroidal duct merge at distances O ( M )  from the junction, so that in practice the fully 
developed Poiseuille velocity profile in this duct will never be established. In addition, 
the theory predicts no O( 1) pressure drop in the toroidal duct. 

The main assumption of the asymptotic theory is that the flow is inertialess. In three- 
dimensional MHD flows inertia effects play a significant role due to local accelerations 



94 R. Stieglitz, L. Barleon, L. Buhler and S. Molokov 

and braking of the fluid. One can expect that, in particular, the parallel layers with the 
high-velocity jets are more affected by inertial effects than the core flow. Inertial forces 
in the parallel layers become important for N = O(M3’’) and dominant for N < M3”. 
In the latter case the thickness of these layers becomes 0(N-1/3), and the flow in the 
layers is determined by electromagnetic-inertia interaction. Effectively, the inertial 
contribution to the pressure drop is of the order of N-1/3 (see tj 5.1.2). These asymptotic 
estimates have been suggested by Hunt & Holroyd (1977), who based their analysis on 
the work of Hunt & Leibovich (1967). For N = O(W/ ’ )  and for N 4 M3” no adequate 
theoretical results exist for bend flows or for general three-dimensional MHD duct 
flows except these simple asymptotic estimates (see the discussion by Molokov, Buhler 
& Stieglitz 1994). Thus experimental studies of bend flows are of particular importance. 
Most of these studies have been performed for bends of circular cross-section, which 
are significantly different from rectangular ones. Therefore, these studies are not 
directly related to the present one. An appropriate review of these flows can be found 
in Hunt & Holroyd (1977) and Holroyd & Hunt (1980). What is similar in flows in 
circular and rectangular bends is the formation of the internal layer, which has the same 
asymptotic thickness in both cases. Therefore, the inertial contribution to the pressure 
drop should vary similarly with N .  

At attempt to prove the N-1/3-dependence experimentally has been made by Holroyd 
(1 979) in a radial-toroidal-radial Z-shaped bend of circular cross-section with the wall 
conductance ratio of c = 0.155 at relatively low M M 230 and low N sz 101-102. 
Although the experimental data for pressure suggest N-1’3-dependence, the accuracy of 
the measurements did not allow final proof of this important relation. The results of 
most of the other authors were contradictory and led to a great degree of confusion. 
The pressure drop due to inertial effects varied from N-l (180” bend of circular cross- 
section, Bocheninskii, Tananaev & Yakovlev 1977), which corresponds to very fast 
decay of the inertia effects with N ,  to N-O ’ (U-bend of circular cross-section, Grinberg, 
Kaudze & Lielausis 1985), which corresponds presumably to negligible inertia effects. 
The exponent - 1/3 has never appeared (see the critical reviews by Holroyd 1979, 1980 
and Molokov et al. 1994). The first series of experiments carried out by Barleon et al. 
(1992, 1993a, b)  in a right-angle bend of rectangular cross-section clarified that inertia 
effects play a significant role in radial-toroidal bends, which suggests that a more 
detailed analysis of the phenomenon is necessary. 

It is very important to note that the type of variation of the pressure drop with N 
and M is of fundamental importance not only for bend flows but for general three- 
dimensional MHD flows. The reason is that the exponents of N and M characterize the 
type of flow pattern that is established and the main effects that determine this pattern. 
Thus, the experimental results suggest how the actual theoretical models require 
improvement. In particular, the N-1’3-dependence indicates that the core may be 
considered as inviscid and inertialess, while the parallel layers are governed by 
electromagnetic-inertia interaction. 

This paper presents a comprehensive experimental study of the flow in a right-angle 
bend with the following main objectives: 

(i) to determine the range of validity of the asymptotic flow model developed for 
N B MI2. 

(ii) to verify Hunt & Holroyd’s estimates of N-’I3 of the thickness of parallel layers 
for N + A@/’, 

(iii) to determine the scaling laws for the pressure drop in the wide range of 
parameter variation for N B hP2 as well as for N 4 W”, for which no theoretical 
results exist. 
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FIGURE 2. (a) Geometrical dimensions of the 2-shaped test section. (b) Location of the wall potential 
measurement lines. (c) Location of the pressure taps in the test section. (d)  Location of the traversable 
potential probes. 

A comparison of the experimental data and theoretical results is performed mainly 
for pressure and wall potentials. These quantities can be measured very precisely. 
Measurements of the potential gradient within the liquid metal are less accurate and 
difficult to interpret (cf. 55.2.2 and the Appendix). 

In 4 5.1 the results for 0 = 0" are presented, while the effects of field inclinations are 
studied in $5.2. In both cases numerical results are discussed first, and then compared 
with the experiment. 

2. Formulation 
The MHD bend flow under consideration is studied in a Z-shaped geometry as 

shown in figure 2(a) ,  which has been chosen in order to fit best the experimental 
facility. The dimensionless equations governing the MHD flow in the inductionless 
limit as R, - 0  are the conservation of: 

(2.1) 
1 =-Vp+-Au+jxB, MZ momentum 

mass 

charge 

and Ohm's law 

V*V = 0,  

0 . j  = 0 ;  

j = - V O  + v x B. 
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Here, v = (u, v, w), B = (-sin 0, cos 0, 0), j ,  q5,p and t denote the dimensionless 
velocity, the magnetic induction, the electric current density, the electric potential, the 
pressure and time, scaled with the characteristic values v,, B,, m, B,,, av,B,,, amo B;, 
and a/v,,, respectively. In the theoretical consideration the magnetic field is assumed to 
be uniform. 

The boundary conditions at the duct walls are the no-slip condition 

VIW*ll = 0, (2.5) 

and the thin-wall condition (see Walker 1981) 

j . n  = cvz, @w, (2.6) 

where n is the inward unit normal to the wall, and V, denotes the projection of the 
gradient on the wall surface. The thin-wall condition describes the balance of charge 
in the conducting duct walls. The currents (-j-n) from the fluid to the wall enter this 
balance as a source term. If the fluid is in perfect electrical contact with the duct walls 
so that there is no contact resistance across the fluid-wall interface, the potential of the 
wall and that of the adjacent fluid are equal, i.e. QW = @ at the interface. 

If the toroidal ducts are long enough, fully developed conditions are established with 

- u = w = O  as y - i c o .  a@ - _  - const., - - 
aY a? 

If 0 = 0", the conditions ap/ay = const., a@/ay = 0 still hold but the conditions p = 
constant, @ = 0 seem more appropriate because no currents are induced in field- 
aligned flows. 

3. Analysis 
The steady, inertialess versions of equations (2.1k(2.7) are analysed by asymptotic 

methods for N % MI2 % 1 and for c % M-Ii2 (see Moon & Walker 1990; Moon et al. 
1991; Hua & Walker 1991; Biihler 1993, 1995, and Molokov & Buhler, 1994, 1995). 

For 0 = 0" the analysis follows the line taken by Molokov & Biihler (1994). The 
only modification is in the boundary conditions in the radial duct, which is discussed 
below. 

The flow in one 90" bend becomes independent of the flow in the other one if the 
radial-duct length lrad (see figure 1) is sufficiently large, i.e. if fully developed MHD flow 
is established at x = l/21rad. This allows the computational effort to be reduced by 
considering only the part with x < 1/2 lrad and assuming fully developed flow 
conditions 

aP a@ 
ax ax - = const.; - = v = w = 0 at x = l/2lrad. 

These flow conditions were assumed in Molokov & Biihler's calculations. For 
calculations where these conditions are not satisfied (in the present case 1/2 lrad is only 
2.3) the computational domain is extended to x = lrad with appropriate symmetry 
conditions between x = 0 and x = lrad applied at x = lrad. This is justified in inertialess 
flows. For potentials this symmetry condition reads 

@ ( l r a d , Y ,  4 = @(O, 2a -Y, 4. (3.2) 
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This change in the boundary condition does not lead to qualitatively new results, but 
for x = 1/2l,,, = 2.3 the flow in the radial duct turns out to be slightly different from 
fully developed. 

Flows with 0 = 0" are calculated by the use of the numerical code developed by 
Buhler (1 995). This code has been designed for calculations of three-dimensional 
inertialess MHD flows in ducts of arbitrary geometry. 

In both cases 0 = 0" and 0 + 0" the same asumptions are made and both methods 
take advantage of specific properties of MHD flows in strong fields. The most essential 
one is the fact that the pressure does not vary along magnetic field lines as M ,  N -+ co 
(Kulikovskii 1968). This can be easily seen by multiplying equation (2.1) by B, which 
reduces to 

B.Vp=O as M ,  N+a. ( 3 . 3 )  

This allows an analytical integration of the basic equations in magnetic field direction. 
The integration functions can be related to the wall potential QW and to the pressure 
p ,  the leading variables in the analysis. Once cDW and p are determined, the whole three- 
dimensional flow can be reconstructed. While the approach proposed by Molokov & 
Biihler (1994) uses an iterative method to determine pressure and wall potential in 
rectangular subdomains, the code proposed by Biihler (1 995) uses a direct linear 
solver to determine the solution on a boundary-fitted grid. 

4. Experimental set-up 
The experiments in the Z-shaped test section have been performed in the MEKKA 

facility (Magneto-Hydrodynamik-Experiment in Natrium-Kalium Karlsruhe) of the 
Forschungszentrum Karlsruhe. Here only a brief overview of the experimental facility 
is given, a more detailed description may be taken from Barleon, Casal & Lenhart 
(1991). 

The magnet used in the experiment is a liquid-helium-cooled super-conducting 
solenoid magnet with a maximum magnetic field strength of 3.6 Tesla. The cylindrical 
space has a diameter of 400 mm. The position of the test section in the magnet was 
chosen in such a way as to provide an almost homogeneous field over the whole of the 
radial-toroidal bend. The variations of the magnetic field strength over the part of the 
test section of interest shows deviations of less than 10 YO in a length of 450 mm. The 
mapping of the absolute magnetic induction of the cylinder-symmetrical field is shown 
as isolines in figure 3, together with the magnetic field vectors. 

A centrifugal pump with a maximum pressure head of 0.9 MPa at a flow rate of 
22 m3 hpl circulates the eutectic sodium-potassium alloy Na22K78 (melting point 
- I1  "C) at temperatures below 250 "C. The thermophysical properties of the alloy 
have been described in detail by O'Donnell, Papanicolaou & Reed (1989). An 
additional electromagnetic pump is used for high-temperature wetting procedures 
above 250 "C and also for very low flow rates. During the wetting procedure impurities 
on the steel surface, such as oxygen or alloy components are dissolved in the NaK. 
With this procedure a perfect electrical contact between the structural material and the 
fluid without contact resistance is ensured. The dissipated energy in the loop is removed 
by an oil-cooled double-tube heat exchanger. 

The flow rate is measured simultaneously by a gyrostatic mass flow meter and by an 
electromagnetic flow meter in order to have two different measurement principles to 
determine the flow rate. Both agreed throughout the measurements with an accuracy 
of 0.5 %. 
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FIGURE 3. The isoline graph shows the total magnetic induction IBI of the magnet used in the 
experiment. The overlayed vector plot shows the magnetic field vector orientation in the magnet. The 
Z-shaped test section is shown as a straight line. The other inclination angles investigated, 0 = - 5" 
(-------) and 0 = 15" (---) are also indicated. 

The entire loop can be moved on rails together with the test section along the axis 
of the magnet. A valve station interconnected in the inlet and outlet lines of the test 
section allows a reversal of the flow direction within the test module. 

The test section itself was designed in joint work of the Forschungszentrum 
Karlsruhe with the Argonne National Laboratory (ANL) and was fabricated at the 
ANL. The rectangular ducts are made of 4.45 mm thick stainless steel plates welded 
together by electron beam welding to ensure sharp corners. The section is designed as 
a symmetric Z-bend. Half the distance between the Hartmann walls in the radial duct 
is a = 38.1 mm. This gives a wall conductance ratio of c = 0.052. All other length scales 
of the test section, which are normalized with a may be taken from figure 2(a). The 
measurement of the wall potentials was performed in one half of the test section, 
whereas the pressure measurements were carried out in the other half. 

In order to measure the electric wall potentials 141 spring-loaded needles, mounted 
on fibreglass plates, are attached to the test section. The needles are in electric contact 
with the steel walls of the duct. They are arranged in 9 lines with 13-17 probes in each 
line at an angle of 0 = 15" with respect to the toroidal duct branch, see figure 2(b). The 
electric potential at a defined location is measured as a potential difference with respect 
to a fixed reference potential originating from one needle welded on the duct wall in 
the plane z = 0. 

The pressure measurements have been carried out using stainless steel tubes welded 
on the duct wall centreline. Four unipolar capacitive pressure transducers of different 
measurement ranges (0-10, 0-370, CL1860, WOO0 mbar) are arranged in parallel to 
measure the pressure differences between two locations. The maximal resolution of the 
pressure transducers is k0.3 mbars. The exact location of the pressure holes is shown 
in figure 2(c). 

When measuring pressures in three-dimensional MHD flows a phenomenon appears 
which is not known in conventional hydrodynamics. Directly measured pressure 
differences do not represent the real pressure differences between two locations in the 
duct. A virtual pressure is superimposed on the real pressure in the duct. For example, 
in the toroidal duct at x = - 1.33 the component of current j ,  flows normal to the 





100 R. Stieglitz, L. Burleon, L. Buhler und S.  Molokov 

5. Results and discussion 

5.1.1. Numericul results 
The calculated isolines of the wall electric potential for the experimental geometry 

are shown in figure 1. The wall current is perpendicular to the isolines. The main flow 
characteristics have been outlined in the Introduction and are generally the same as 
those described by Molokov & Biihler (1994). As the flow approaches the junction, the 
fluid is pushed towards the sidewalls, and the sidewall jets increase in magnitude. The 
fluid in the toroidal duct is transported in the y-direction in the parallel layers, since 
the y-component of the core velocity vanishes. The flow distribution among the layers 
is shown in figure 5. A recirculating flow in the toroidal duct is predicted, which is 
associated with the negative flow rate Q, in the major part of the toroidal duct. 

The question of the pressure drop is very important. In the radial duct the pressure 
drop between any two points along the flow may be split into two parts. The first part, 
the so-called two-dimensional pressure drop ApZD may be estimated using the 
approximate expression for the fully developed pressure gradient 

5.1. @ = 0" 

see Tillack (1990). A more precise but also a more complicated expression for c 9 M-l 
has been derived by Molokov (1993). The second part, the so-called three-dimensional 
pressure drop ApsD, which expresses the excess pressure drop required for reshaping the 
velocity profile near the junction, can be written in the form 

AP3D = ' P 3 D ,  C(M7 N* AP3D,  N ( N )  t A p 3 D ,  M ( M ) '  ( 5 4  

Even in inviscid and inertialess flows, in which only Lorentz and pressure forces 
appear, a three-dimensional pressure drop ApSD, caused by Joulean dissipation of 
three-dimensional electric currents is present. The second and third terms in equation 
(5.2) represent the contribution of parallel layers with electromagnetic-inertia and 
viscous4ectromagnetic interaction, respectively. The first term may be calculated with 
the asymptotic flow model presented here. Both other contributions could up to now 
be determined only experimentally. The formula (5.2) neglects the interaction of 
viscous-inertia effects, which are present in a real MHD flow if both effects on pressure 
drop are comparable. 

In the toroidal duct both ApZD and ApaD, 
The total pressure drop may also be represented in the form 

vanish. 

AP = Apc(M7 N - t  ~~>+AP,D,N(N)+AP,D,M(M). (5.3) 

In this case the first and the third terms on the right-hand side contain contributions 
from the two-dimensional pressure drop. 

Figure 6 shows the calculated pressure distribution along the radial duct for the 
investigated test section in different planes z = constant. Near the two toroidal ducts 
at x = 0 and x = 4.6 the strongest deviations between the three- and the two- 
dimensional flow appear. With increasing distance from the toroidal ducts towards the 
symmetry plane x = 2.3 the three-dimensional effects on the pressure decrease, but 
even at x = 2.3 they are still present. The pressure gradient there is approximately 
4.5% higher than that of a two-dimensional MHD flow. Owing to inertia effects the 
deviations from the fully developed conditions are expected to be even higher, so that 
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FIGURE 6. Calculated axial pressure distribution in the radial duct for different z-coordinates 
compared with the fully developed two-dimensional flow for c = 0.052; 0 = 0". 

in reality the flow will never be fully developed in the entire test section. The calculated 
three-dimensional pressure drop between x = 0 and x = 2.3 is A P ~ ~ ,  = 0.05. 

The numerically obtained data will be compared in the next subsection with the 
experimentally measured values. 

5.1.2. Experimental results for  0 = 0" 
(a> Po tent ial measurements 

In the presentation of the experimental results only characteristic values at selected 
positions are shown. Other results not presented here show the same tendency. 

First, the symmetry of the flow with respect to the plane z = 0 has been investigated 
in order to confirm the geometrical arrangement of the test section with respect to the 
orientation of the magnetic field. Figure 7 shows the potential measurements at 
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positions A, C, E, G, H, I and J for - 1 < z < 0 for different Hartmann numbers at a 
constant value of N = 1920. To check the symmetry the negative values of the potential 
at z = f 1 (filled symbols) and included in figure 7. The differences in all positions 
between - @(z = 1) and @(z = - 1) are within the accuracy of measurement, so that 
the flow is symmetric with respect to the plane z = 0. No significant influence of the 
Hartmann number on the potential of the first wall (see figure 1) of the toroidal duct 
nor on the Hartmann walls of the radial duct can be observed within the investigated 
range of M .  The agreement between the measured and the calculated values is very 
good. 

Potential measurements at the same positions for a constant Hartmann number at 
different values of the interaction parameter in the range N = 1.8 x 10S2.6 x lo4 
exhibit similar behaviour with no significant influence of N at the same positions, see 
figure 8. The agreement with the numerically calculated data is good, even for the 
corner regions. The deviations that appear between the model and the measurement 
are below 10 YO. 

The potential on the Hartmann walls GWH is equal to the core potential Gc at the 
same position for large M ;  (OWH - Qc) is of O ( M P )  according to Walker, Ludford 
& Hunt (1972). Thus, the potential measurements on the Hartmann walls reveal that 
even at the lowest values of M z 2 x lo3 and N z 2 x lo3 the flow in the core is 
inertialess and inviscid. 

Figure 9 shows the potential distributions on a toroidal sidewall for different values 
of N at positions x = constant as a function of y .  In the vicinity of the bend in the 
sidewalls in the region - 1.33 < x < -0.1 and 0 < y < 3 a dependence of the sidewall 
potential on the interaction parameter is found, in contrast to the Hartmann walls, 
where such a dependence could not be detected. For high N the experimental values 
tend to the asymptotic ones. However, even for the highest values of N investigated, 
the magnitude of the measured wall potentials in this region is higher than the 
calculated values. 

In contrast, in the radial duct no significant influence of inertia on the sidewall 
potential was observed for the same parameters, except for the immediate vicinity of 
the inner corner at y = 2. The sidewall potentials at a characteristic position in the 
radial duct near the inner corner (x = 0.22; y = 1.87) are plotted in figure 10 versus an 
axis scaled with N-'13 to demonstrate clearly the linear dependence of the inertial part 
of the potential on this quantity. Figure 10 shows in addition the calculated asymptotic 
value. For high values of N ,  i.e. as --f 0 the measured values tend asymptotically 
towards the theoretical result. The same dependence on N has been observed at the 
sidewalls of the toroidal duct. Figure 10 further reveals that inertia effects would 
become small when N exceeds a value larger than about MI2 in accordance with 
predictions by Hunt & Holroyd (1977). The measured dependence of the sidewall 
potential on N-1/3 agrees with the scaling law for the thickness of inertial side layers 
suggested by Hunt & Holroyd (1977). It has never been shown experimentally up to 
now with such an accuracy. 

The absolute value of the measured sidewall potential in the radial duct near the 
bend in a radial + toroidal flow is higher than in a toroidal --f radial flow, see figure 10. 
An explanation for this could be that, in the radial --f toroidal case, directly beyond the 
corner at x < 0, y > 2 a separation zone may develop along the second wall. Because 
of the previously discussed conditions this zone is pressed towards the second wall. It 
persists over long toroidal distances and remains rather thin so that its Ohmic 
resistance is relatively high. For the reversed flow direction the separation area may 
develop near the top Hartmann wall at x > 0, y < 2. Compared to the previously 
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discussed case it will be much shorter but it can be thicker. The induced potential 
in this separation area is lower. Therefore, the Ohmic resistance of the zone in the 
toroidal +radial flow is smaller, which leads to a higher current and thus to a higher 
pressure drop, as will be shown below. 

(b) Pressure measurements 
All pressure measurements discussed were performed on the symmetry plane z = 0. 

The results shown in figures 11-14 represent the pressure at the fluid-wall interface, 
obtained by correction of the real measured pressure with the pressure difference 
induced by wall currents across the duct wall bore according to equation (4.3). 

In the asymptotic model the pressure is constant along magnetic field lines according 
to equation (3.3). A good agreement between the theoretical results and the measured 
values has been found at high N .  The deviations from the asymptotic theory at high 
N are small compared to the total pressure drop between D3 and D9, which is about 
0.14. 

In figure 11 (a, b) the pressure differences between D5 and D6, and D6 and D7 are 
shown as a function of N .  Deviations between model and measurement for high N are 
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FIGURE 11. Pressure differences in the toroidal duct between (a) D5 and D6, (b) D6 and D7, and (c) 
D7 and D9 for M = 7851; c = 0.052; 0 = 0" and radial-+ toroidal flow. -, Pressure drop 
predicted by the asymptotic model as M ,  N - t  co. 
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FIGURE 12. Influence of the radial magnetic field component on the measured potential and pressure 
distribution. (a) Measured wall potential at the line P for M = 8177; c = 0.052; 0 = 0" and 
radial-ttoroidalflow. 0, N=26390; 17, N =  19321; a, N=5721;  0, N=3556;z?j, N =  1851; 
-, calculated potential distribution ( M ,  N --f co). (b)  Radial magnetic field strength in Tesla in the 
plane x = - 1.33 as a function of y .  

caused by the resolution of the pressure transducers at extremely low pressures for 
small flow rates. The measured differences to the model prediction occurring between 
D7 and D9, see figure 11 (c), are not caused by measurement errors. They arise from 
the weak inhomogeneity of the magnetic field. This can be confirmed by the potential 
measurements at station P shown in figure 12(a). The potential there is positive, while 
in the rest of the duct for z < 0 it is negative. The absolute strength of the radial 
component of the magnetic field at x = - 1.33 along y is shown in figure 12(b). 
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FIGURE 14. Pressure difference between D3 and D9 for various M and N ;  c = 0.052; 0 = 0'; 
radial-ttoroidal flow. 0, M = 7651; 0, M = 3975; A, M = 1992; -, calculated pressure 
difference as M. N +  co . 

The pressure difference between D5 and D9 becomes almost zero for large N .  
According to the sketch in figure 12(b), these two points correspond approximately to 
the same magnetic field line, so that equation (3.3) holds. 

In figure 13 the pressure difference between the locations D4 and D5 is shown as a 
function of N for both flow directions. Similar to the wall potential measurements on 
the sidewalls near the bend, see figure 10, a clear dependence of the pressure drop on 
the flow direction exists. The pressure difference also depends significantly on N and 
diminishes as N increases. The pressure differences measured for a toroidal + radial 
flow are higher than those for a radial + toroidal flow, supporting the previously 
discussed hypothesis about the separation zone. With increasing N the measured values 
tend to the theoretical ones. 

Finally the total pressure drop in the 90" bend between D3 and D9 is investigated. 
In figure 14 this pressure drop is shown as a function of N for various M in a 
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radial + toroidal flow. At high interaction parameters the measured values agree rather 
well with the ones calculated with asymptotic model. At low M and N however, the 
pressure drop is significantly higher than in the inertialess limit. 

A fitting procedure based on the minimum of the error squared for the measured 
data leads to the following relation according to equation (5.3): 

ApDs-Ds = 0.135 + 0.406 N-O 33i + 0.0939 (5.4) 

The first constant 0.135 corresponds with an accuracy of 3.5 YO to the theoretical value. 
The exponents determined are very close to those predicted above. 

5.2. Sensitivity to magnetic jield inclinations 
An important parameter in MHD flows is the orientation of the magnetic field with 
respect to the bend geometry. Depending on the field orientation with respect to the 
toroidal duct completely different flow patterns, velocity profiles and pressure drops 
can establish. 

5.2.1. Phenomenology of small field inclinations 
Figure 15 shows a bend with a negative and figure 16 a bend with a positive magnetic 

field inclination angle 0. For simplicity inclinations of 0 < 0" are called forward 
bends, inclinations of 0 > 0" are called backward bends, according to the terminology 
introduced by Moon &Walker (1990) and Moon et al. (1991). In a backward bend the 
internal layer detaches from the second wall, and is able to carry a significant portion 
of the volume flux. In a forward bend two internal layers appear, which cross the 
bend's inner and outer corners. These layers are unable to carry any significant volume 
flux. An essential difference between flows in bends with 0 = 0" and those with 
0 + 0" is that in the latter both the fully developed and three-dimensional pressure 
drop are not zero in both the radial and the toroidal ducts. Further features of flows 
with 0 =l 0" can be found in a detailed discussion by Moon et al. (1991). 

5.2.2. Experimental results for  small ,field inclinations 
(a) Potential meusurements 

Consider first the forward bend with 0 = - 5" with a radial-toroidal flow. In figure 
15 the wall potentials on the Hartmann walls at several positions are shown for 
different values of N .  At line A nearly the same potential distribution as for 0 = 0" is 
obtained. As the flow approaches the internal layer from A over C to E the potential 
on the Hartmann wall decreases continuously. No influence of N can be detected, even 
at the transition to the sidewall at z = - 1. The agreement of the experimental and 
numerical data at the positions H, I and J is good. However, near the outer corner at 
H and z = - 1 a weak dependence of the potential on the interaction parameter 
appears, which increases a little up to position I. The absolute value of the measured 
potential is slightly higher than the calculated one. This may indicate that due to inertia 
forces more fluid in the cores C2 and C3 is pushed normal to the magnetic field at 
positions Hand I than predicted by the asymptotic model, inducing a higher potential 
there. 

To perform measurements for the inclination angle 0 = -5" the symmetry axis of 
the test section was rotated. Therefore the line P was located near the coils and 
experienced a radial magnetic field of 0.16 Tesla, which explains the discrepancies 
between prediction and experiment for this line. 

In the backward bend for 0 = 1 5" a similar potential distribution on the radial duct 
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FIGURE 17. Pressure differences in a radial-toroidal flow at M = 7785; c = 0.052 as functions of N 
compared with the asymptotic values for M ,  N +  co (-). (a, b) Forward elbow (0 = - 5") ;  (c, d )  
backward elbow (0 = 15"). 

surface is obtained as in the previously discussed cases. In figure 16 the measured 
potentials along different lines from A --f B to P + Q are shown as a function of the 
coordinate s, which measures the distance along the perimeter of characteristic cross- 
sections aligned with the magnetic field, see the schematics in figure 16. In the 
inertialess model a large amount of fluid flows through the internal layer directly from 
the core C1 towards core C3, bypassing core C2. As a result the velocity and the 
potential in region C2 is small. Additionally in C2 the induced potential reverses its 
sign due to v x B .  

In the experiment more fluid will be transported through the internal layer into 
region C2 than the theory predicts because of inertia effects. Hence, more fluid flows in 
C2 inducing higher absolute values of the potential than predicted by the model. The 
absolute value of the potential increases with decreasing interaction parameter both on 
the Hartmann walls and on the sidewalls. The inertial part of the potential on the 
sidewalls increases proportionally to N-1/3. This dependency of the potential on N-lI3 
is also shown in figure 16 for the characteristic point at s = 5.1 on the traverse J + G. 
With increasing interaction parameter the experimental data tend to those obtained by 
the asymptotic model. In extended measurements up to N = 1.2 x lo5 the inertialess 
value for the sidewall potential could not be completely reached. Inertia effects on the 
sidewall potential are clearly more manifested than in the case 0 = 0" (compare with 
figure 10). In region C3 the strong dependence of the potentials on N diminishes and 
at the line P+Q the potential shows a distribution which is qualitatively and 
quantitatively the same as predicted by the asymptotic model. 
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function of N and M compared with the asymptotic values for M, N +  m (-). (a)  Forward elbow 
with 0 = -5"; (b) backward elbow with 0 = 15". a, M = 1952; 0, M = 4175; 0, M = 7766. 

(6) Pressure measurements 
In figure 17 (a-d) the pressure differences between D4 and D5 as well as between D6 

and D9 are shown for the inclinations 0 = 15" and 0 = - 5". The dependence of the 
pressure drop on inertia effects in the vicinity of the bend can be clearly observed. With 
increasing N the pressure drop tends to the asymptotic value for both field inclinations, 
see figure 17(a, c). The dependence of the pressure drop on inertia is greater for the 
backward bend than for the forward bend because the internal layer plays a more 
important role in this case. In the toroidal duct between points D6 and D9 for both 
field inclinations no significant influence of inertia on the flow could be found, see 
figure 17@, d) .  For the inclination angle 0 = 15" the agreement of calculated and 
measured values is quite good. In the forward bend the measured values are a little 
higher than the calculated ones. The pressure difference between D6 and D9 caused by 
the radial field components near the coils was estimated to be 0.01. This corresponds 
to the deviation from the theoretical value, which assumes a homogeneous uniform 
solenoidal magnetic field. 

Let us discuss the total bend pressure drop between D3 and D9, which is shown in 
figure 18 as a function of N for various M and for 0 = - 5", + 15". At high M and N 
the pressure drop tends to the asymptotic value in both cases. The pressure drop due 
to inertia A P , ~ ,  for both the forward and backward bends scales with N-'I3, the same 
dependency as for 0 = 0". 

For the backward bend a regression of the experimental data based on a least-squares 
fit and the correlation 5.3 provides (0 = 15") the following relationship: 

AP, ,~ . , ,~  = 0.164+0.6N-' 334+0.02M-058.  (5.5) 
Here, the first constant corresponds to the theoretical value with an accuracy of 3.5 %. 
The additional pressure drop due to the variation of the Hartmann number ApQD, is 
nearly proportional to M-'" and is small compared to the contribution originating 
from inertia effects, which depend approximately on N-'I3. 

( c )  Measurements of the potential gradient within the liquid metal 
Local probe experiments have been conducted only for the inclination angle 

0 = 15", because with the available measuring technique sufficiently high signals are 
only available for this inclination. The probe signals were recorded twice in every 
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the radial duct in the radial +- toroidal flow for M = 7.7 x lo3; N = 3.3 x lo4; 0 = 15"; and c = 0.052. 
__ , Calculated values as M ,  N +  a. 

traverse. In the normalization of the potential gradient values the tip distance has 
been used as the characteristic geometrical length scale. The traversing coordinates y* 
and x* denote the dimensionless distance normal to the wall. In all measurements 
presented the sensing tips of the probe are facing the main flow, and the flow direction 
is radial + toroidal. 

The potential gradient measurement at station S l  for z = 0 is shown in figure 19(a). 
Since the probe is inserted at the wall at y = 0 the wall there is locally electrically 
disturbed. The wakes arising from the prong and the locally lower electrical resistance 
lead to a potential decrease there, which may be explained by the effects described in 
the Appendix. This effect is not so pronounced at y = 2, because there the wall is not 
directly disturbed and therefore only an interaction of the wake with the wall exists. 
The agreement between predicted and measured gradients near the wall is within 20 YO. 
However, a remarkable difference with the prediction is found in the duct centre, where 
the potential decreases. We have no complete explanation for this effect, which may or 
may not indicate a reduced velocity in the duct centre due to the reduced potential. 

Significant differences between model and measurements appear at S4 (figure 19b) 
and S6 (figure 19c). Near the wall at y = 0 the measured gradients are quantitatively 
the same as the ones predicted by the asymptotic theory. But in the interior of the duct 
the measured values are significantly lower (by up to 200%) and the shape of the 
potential gradient distributions is completely different from those predicted in the 
asymptotic model. 

In the asymptotic model only the interaction of current and core pressure drives the 
fluid motion in the core. But the surface potentials in the 0 = 15" case show that inertia 
pushes the fluid towards the first wall. This is reflected in the surface potential 
measurements by a higher potential (see figure 16, line I + H). In the potential gradient 
measurements the same tendency has been found, as figure 19(d) at station S7 shows. 
The recorded data are many times higher than the calculated ones. 
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Further, in the toroidal duct the agreement between measured and calculated data 
gets worse. In figure 20(a) the dimensionless potential gradient at S11 is presented for 
different N .  Particularly remarkable in this graph is the position x = - 0.66, where the 
presence of the internal layer is clearly seen. Here the sign of the measured potential 
gradients changes within a rather small distance and the slope is higher than the model 
predictions by an order of magnitude. The strong dependence of the potential gradients 
on the interaction parameter at this special position is not so surprising. Also, at station 
S14 the biggest deviations between the model and the measurements have been found 
in the region of the internal layer, see figure 20(b). Nevertheless, the measured and the 
predicted potential gradient distributions there also differ not only quantitatively but 
also qualitatively. 

We have no obvious explanation for the disagreement in the local measurements 
between the theory and the experiment. One of the possibilities is the negative effect of 
the probe that leads to the disturbance of the velocity profile (see the Appendix). This 
is supported by the fact that the experimental results tend only weakly to the 
asymptotic values as N increases. However we cannot exclude the possibility that this 
is just a pure inertial effect, and that the inertialess limit is far from being reached. In 
fact, as follows from the next section, these measurements were done for values of N 
close to the onset of time-dependent flow. This disagreement gives grounds for further 
work and for the development of another flow model (see Molokov et al. 1994). 

5.3. Stability considerations 
The asymptotic model discussed is based on the assumption of a laminar inertialess 
flow. Owing to the high-velocity jets in the parallel layers they may become unstable 
because of the inflection point in the velocity profiles and thus time-dependent flows 
may appear. Evidence of the instability of side layers in smooth three-dimensional 
flows has been provided by many authors. The most clear and detailed measurements 
have been performed by Reed & Picologlou (1989) investigating the flow in a straight 
rectangular duct into a fringing magnetic field. They found instabilities evolving from 
the side layers at a certain critical Reynolds number Re (Re = W / N ) .  They state that 
the onset of instability is insensitive to the Hartmann number but the final state of the 
instability is strongly dependent on M .  Related to this experiment Ting et al. (1991) 
performed a linear stability analysis for the side layers, which shows that the onset of 
turbulence is strongly dependent on M .  The critical Reynolds number found in the 
analysis is ReCTtt = 3 13 which is an order of magnitude smaller than in the experiments. 
Therefore, the questions about the onset of time-dependent flow, the type of instability 
developed and the layer thickness in which instabilities occur remain unanswered. 
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at the position x = -0.6167 in the radial-ztoroidal flow for M = 7.8 x lo3; c = 0.052; 0 = 15". 
(0) N = 1.5 x 104; (b) N = 1.5 x 104; (c) N = 1.03 x 103; ( d )  N = 4 x 103. 

In order to detect the time-dependent flow phenomena which presumably occur near 
the inflection points of high-velocity jets like those in the side layers or the internal 
layers, traversable LEVI-probes were introduced in the bend at different locations. 
These measurements had three main aims : 

(i) detection of the transition from laminar flow to time-dependent flow; 
(ii) to find the spatial extent of domains with time-dependent flow; 
(iii) to find the amplitude and frequency of the time-dependent signal. 
The measurements were performed only for the inclination angle 0 = 15" and in 

planes z = 0 and z = 0.92. The Hartmann number was set to a constant value of A4 = 
7.8 x lo3 and the interaction parameter was varied in the range N = 2 x 103-3S x lo4. 
This corresponds to Reynolds numbers Re = 1.7 x lo3-3 x lo4. Based on the 
predictions of the asymptotic model a high-velocity jet associated with high shear 
stresses appears in the internal layer, which separates different flow domains, or in the 
side layers. 

In the radial duct at the position S6 no time-dependent signals were observed 
throughout the investigated interaction parameter range. Even by crossing the internal 
layer location a fluctuating probe signal could not be observed. 

In contrast to S6, in the toroidal branch at S11 highly localized time-dependent 
fluctuations were measured at two discrete positions of the traverse, namely 
x = -0.6167 and x = -0.7167 at y = 4.25. As expected oscillations are recorded 
near the left- and right-hand boundary of the shear layer, where the highest velocity 
gradients appear. The distance between these two locations is about twice the width of 
an inertial internal layer thickness - N-lI3 for the investigated value of N,  in 
accordance with the previous discussion. 

In the next step at the same location the onset of time-dependent signals was 



Mcrgnetohydrod-ynamic f low in a right-angle bend 117 

0.1 1 .0 10.0 

Frequency (Hz) 
FIGURE 22. Fourier transform of the prbe signal at the position x = -0.6167 in the plane y = 
4.25, z = 0 for M = 7.8 x lo3; N = 4 x lo3, c = 0.052; 0 = 15" for the radial+ toroidal flow. 

investigated at a fixed Hartmann number of M = 7.8 x lo3. The transition from steady 
to time-dependent signals was found at a critical interaction parameter of NCTit = 
10300. Figure 21 (a-d) shows the time history for decreasing interaction parameters of 
N = 3 x lo4 + 4 x lo3. It can be clearly seen in figures 21 (c) and 21 (d) that the signals 
exhibit characteristic frequencies. In figure 22 a Fourier transform of the time- 
dependent signal is shown for the position x = - 0.6167 in the plane y = 4.25, z = 0 for 
M = 7.8 x lo3 and an interaction parameter of N = 4 x lo3. The transform shows that 
three frequencies are more preferred than others, namely 5.6, 6.8 and 7.2 Hz. The 
amplitude of the fluctuations is about 7.5 % to 9 % of the mean signal, which is smaller 
than Reed & Picologlou (1989) detected in their experiment. 

The phenomenon has also been investigated at station S14 near the internal layer. 
The onset of time-dependent signals was found at the same critical interaction 
parameter with the same oscillation frequencies. In the whole toroidal duct only near 
the shear layers have highly localized oscillations been found, whereas in the rest of the 
flow domain the signals remained steady in time. 

It should be noted in this context that the appearance of locally time-dependent 
flows at interaction parameters below Ncrit does not lead to a measurable jump of the 
pressure drop in the duct. 

6. Conclusions 
In this article the MHD flow through sharp 90" bends of rectangular cross-section 

with electrically conducting walls is experimentally investigated, varying relevant 
parameters such as the Hartmann number M ,  the interaction parameter N and the 
inclination angle 0 of the magnetic field with respect to the bend. In particular, the 
fusion-relevant parameter range has been of interest, since for hydraulic components 
of fusion reactors the values of N are high, but often do not reach the values necessary 
for inertialess flow conditions, as assumed in the asymptotic models used for the design 
calculations. 

Certain discrepancies between the asymptotic theory and the experiment, which have 
been discovered for both the wall potential and the pressure drop, may be partly 
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attributed to the following fact. For the theory to apply certain conditions have to be 
met, namely c % for N 4 hP2. These assumptions 
ensure that the electric current conducted by the parallel layers of whatever nature is 
negligible with respect to the wall current. None of these requirements has been fulfilled 
in the experiment. The other source of disagreement is the effect of the radial 
component of the magnetic field, not taken into account in the theory. This effect has 
been clearly demonstrated in several figures. 

For the magnetic field inclination 0 = 0" the surface potentials on the Hartmann 
walls as well as on the first wall and the second wall revealed neither an influence of 
M nor of N .  The data obtained agreed qualitatively and quantitatively well with the 
numerically calculated values using the asymptotic model. Based on this one can 
conclude that the MHD bend flow near the cores is inertialess and inviscid at high M 
( M  > lo3) and N ( N  > lo3). However, at the sidewalls in the immediate vicinity of the 
bend, where high-velocity jets are expected, a dependence of the wall potential on 
inertia effects has been found. The wall potential there shows a dependence 
proportional to N-1/3 for its inertial part. An extrapolation of the experimental data 
shows that the inertialess value calculated by the model assuming N % M3l2, is reached 
approximately at N z &P2. At a distance of a few characteristic length from the bend 
the influence of inertia vanishes both on the wall potentials and on the pressure. The 
pressure measurements also show that at high Hartmann numbers ( M  z 8 x lo3) and 
high interaction parameters ( N  z lo5) the agreement between model prediction and 
experiment is good. The deviations appearing are within the measurement accuracy or 
can be explained by the experimental conditions. However, the inertial part of the 
pressure drop which is proportional to N-1/3,  can reach values which are 
comparable to the inertialess pressure drop. Together with the dependence of the 
sidewall potential on the interaction parameter N the -1/3 power law strongly 
suggests that inertial side layers are responsible for the inertial part of the pressure 
losses. In an inertial bend flow the flow direction influences the pressure drop. Owing 
to the nonlinear electromagnetic-inertia interaction the pressure drop in a toroidal-- 
radial bend exhibits a higher pressure drop than a radial-toroidal flow; the dependence 
of Ap,*, on N ,  however, remains proportional to N-1/3 for both flow directions. The 
influence of the flow direction on the pressure drop is small compared to the total 
inertial pressure drop. Variations of the Hartmann number have a negligible influence 
on the pressure drop, which varies as and on surface potential distribution in the 
investigated range of Hartmann numbers ( M  > lo3). 

By inclining the magnetic field with respect to the toroidal duct the bend flow 
exhibits different flow patterns, which are reflected both in wall potential and pressure 
distribution. For both inclination angles excellent agreement of the wall potential on 
the Hartmann walls, the first wall and the second wall has been found. An inclination 
of the magnetic field (0 = 0") leads to a higher pressure drop compared to the aligned 
case (0 = 0"). The pressure drop in a backward bend (0 > 0") is higher than in a 
forward bend (0 < O"), since the flow direction changes with respect to the magnetic 
field and larger three-dimensional currents affecting the pressure drop circulate 
throughout the bend. In a backward bend the influence of inertia on the pressure drop 
is more clearly shown than in the 0 = 0" case or the 0 = - 5" case; the inertial part of 
the pressure drop still depends on N-113. 

A detailed investigation of the inclination angle 0 = 15" showed that, like for 0 = 0", 
inertial side layers appear in the vicinity of the bend region. The inertial part of the 
sidewall potential there also scales with NP1l3. The local potential gradient 
measurements within the fluid indicate that the bend flows remain laminar at a 

for N % &I3/', or c % 
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Hartmann number of M = 7.8 x lo3 in all flow domains for interaction parameters 
N > 10300. By decreasing the interaction parameter below N = 10300 time-dependent 
oscillations were found near the internal layer location. The rest of the flow remains 
steady and laminar. 

Significant differences have been detected between the theory and the experiment in 
local measurements of the potential gradients. Both the inertialess assumption of the 
theory and the measurement technique could be responsible for the disagreement. 
However. the present study clearly shows that inertia effects are important. The same 
conclusion has been reached by Reimann et al. ( I  994), who discovered unexpected 
velocity profiles in the toroidal duct of a U-bend for low values of the interaction 
parameter ( N  - 102--2 x lo2) at Hartmann numbers M - 2 x lo2.  The main conclusion 
is that the knowledge about MHD flows in strong magnetic fields is still insufficient. 
Considerably more effort is required in both theoretical and experimental research of 
MHD flows in complex geometries. 
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the Nuclear fusion project of the Forschungszentrum Karlsruhe and is supported by 
the European Union within the European Fusion Technology Program and the US 
Department of Energy. The authors are grateful to Dr B. F. Picologlou, Dr C. B. Reed, 
and Dr T. Q. Hua from the Argonne National Laboratory and Professor Dr U. Muller 
from the Forschungszentrum Karlsruhe for their help in planning, performing the 
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results. 

Appendix 
A.  1 .  Measurement principle and experimental set-up 

The liquid metal electromagnetic velocimetry instrument (LEVT) is in principle a 
miniaturized electromagnetic flow meter measuring potential gradients. According to 
Ohm's law (equation (2.4)), the potential gradient becomes directly proportional to the 
velocity components perpendicular to the magnetic field, if electrical current are small. 
In duct flows with a wall conductance ratio c < 1 the local current density j can be 
neglected in most cases. In strongly three-dimensional flows like the bend flows three- 
dimensional currents may reach higher values so that direct conclusions about the 
velocity are not possible. 

The LEVI-probes used in the experiment are traversable normal to the wall, have a 
stainless steel shaft of 3 mm in diameter and two sensing tips of 0.5 mm in diameter 
located in a plane z = constant. The stainless steel shaft of the prong is made 
electrically insulating by painting. Also the gold plated sensing wires were painted 
except for the tip. The distance between the tips is 1.97 mm. The measurements were 
carried out in the plane z = 0. 

More details about LEVI probes can be found in Reed & Picologlou (1986). 

A.2. Some considerations on probe measurements in M H D  ,flows 
In hydrodynamic flows around bodies boundary layers at the body surface develop due 
to the viscosity of the fluid. The form and thickness of the layers is determined by an 
equilibrium of inertia and viscosity. The influence of the body on the flow is mainly 
confined to a small area behind the body. For MHD flows in addition to these forces, 
electromagnetic forces play a significant role. They may be even dominant and favour 



120 R. Stieglitz, L. Barleon, L. Buhler and S. Molokov 

4.4 

38.1 

4.45 3 

38.1 I 

I 
Integration eff 
the probe sign 
" .. . 

Fluid domain at rest 

Hartmann layer 6, 
of the prong 

@ =  15" 
Probe shaft 
(stainless steel covered with /-p electically insulating paint) 

B 

FIGURE 23. Sketch of the LEVI-probe inserted in the duct. Included in the graph are the possible 
electromagnetic interactions between the wall, the probe and the flow in a three-dimensional MHD- 
duct flow. (a)  The front view of the radial duct; (b) a top view of the radial duct. 

the development of a stagnant fluid area behind and in front of the body in the 
magnetic field direction. As for the discontinuous slope of a duct cross-section with 
respect to the magnetic field, also when inserting a probe in a MHD flow free shear 
layers (internal layers) appear separating different flow domains, see figure 23 (a). The 
length scale of the stagnant fluid domain upstream and downstream is directly 
proportional to the Hartmann number of the body Mbody (provided inertia effects are 
not dominant) and affects, as calculations of Kyrlidis, Brown & Walker (1990) have 
shown the flow in a quite large region. 

Related to these flow phenomena that appear, several aspects of probe measurements 
in duct flows and the conclusions which one can draw from the data obtained are 
outlined. Putting an arbitrary body into a duct flow affects the flow structure in the 
duct and thereby leads to different signals than for an undisturbed flow. The probe 
shaft Hartmann number in the experiment is about Mprobe z 3 x  lo2, so that 
electromagnetic disturbances originating from the shaft influence the three-dimensional 
MHD flow over quite a large distance. The same holds for the sensing tip of the probe, 
for which the Hartmann number is about Mtip  z 50. 
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Consider now a traversable probe consisting of a prong and two sensing tips within 
a duct extent, see figure 23 (b). At high A4 the zones in which the flow is disturbed may 
reach the duct walls. This is probably the case in the present experiment. Electrical 
currents flowing in the wall can short-circuit through the zone from one duct wall to 
the other. As a result the global current path in the duct is changed and completely 
different flow patterns may be established compared to an undisturbed flow. This effect 
is most clearly seen for strongly three-dimensional flows. 

If the shaft of the probe prong is electrically conducting, electrical currents induced 
in the liquid metal can enter the prong and reduce the potential difference between wall 
and fluid. This also leads to local changes of the flow structure. In probes in which the 
prong is non-unidirectional (probes which have a 90" bend) a shadowing of the sensing 
tips by the MHD wake of the prong may also occur leading to irregular measurement 
results. 

The wakes arising from the sensing tips equalize the potential in the stagnant columns 
in the magnetic field direction. The measured potential gradients therefore represent 
some integral potential difference between the two columns in the flow. If the probe is 
near the wall, complex current paths between conducting walls, probe prong, sensing 
tips, different boundary and internal layers may appear, which lead to unpredictable 
current paths and thereby to misleading probe signals. 

Besides these viscous-electromagnetic effects, inertial-electromagnetic effects may 
also change the flow pattern locally and globally. In the internal layers that appear, 
which separate the flow domains, shear stresses may occur, which lead to the 
production of quasi-two-dimensional vortices. There are several indications that these 
vortices may persist for quite a long distance, see Moreau (1990). 

Generally the effects arising from these phenomena are small as long as the flow is 
two-dimensional or slightly three-dimensional as several experimentators have shown 
in the past, see e.g. Reed, Picologlou & Walker (1987). But as soon as three- 
dimensional currents play a significant role the electromagnetic influence of the probe 
has to be considered. The lack of an adequate theoretical background for the probe 
influence in a duct flow on the flow itself and therefore on the probe signal prevents 
clear analysis of the signals. 
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